
My Gui Documentation

Index
1: Index

2: Getting started

3: How to create elements

4: Creation Functions 1

5: Creation Functions 2

6: Creation Functions 3 And Screen Transitions

7: Setting / returning element properties and Tooltips

8: Gui Interation

9: MsgBox

10: Custom Canvas

11: File Operations

12: File Operations Example

13: Tables and Charts

14: TabControl and Gui Settings and Themes

Getting Started
Installation
	 Unzip the downloaded file and copy the ‘mygui’ folder (located in the module folder)
	 into your monkey modules folder.
	 Make sure that you also have fontmachine module in there
	 Fontmachine is free - http://www.jungleide.com/fontmachine/fontmachine-14-01-14-A.zip

Integration
	 At the beginning of your code:
		 Import mygui
	
	 In your Update Method
		 Gui.Update()

	 In Your Render Method:
		 Gui.Draw()

Import mojo
Import mygui

Function Main()
	 New Game
End Function

Class Game Extends App
	 Method OnCreate()
	 	 SetUpdateRate(60)
	 End Method

	 Method OnUpdate()
		 Gui.Update()
	 End Method

	 Method OnRender()
	 	 Cls(200,200,200)
		 Gui.Draw()
	 End Method
End Class

Please Note
	 MyGui works by drawing elements onto the ‘Gui.CurrentScreen’.
	 This means that in order to create anything you will first have to create a screen to put it on.
	 You can have multiple screens and use effects to transition between them.

How to Create Elements
Declaring Elements
	 All Element types use the same definition type (Gui)
		 Global MyScreen:Gui
		 Global MyButton:Gui

Creating Elements
	 After Declaring you element you can create it, either in your OnCreate Method or on the fly
	 anywhere in your program.
	
	 Remember you will first need to create a screen to place them on.
		 MyScreen Gui.CreateScreen()
		 MyButton = Gui.CreateButton(X, Y, W, H, Text$, Parent:Gui, Style=0)
	
	 All of the creation functions are listed o the next page along with a description of
	 their parameters. But for now let me show you a simple working example.

	 (You may have to manually change the (“) as they copy/paste wrong)

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui

Function Main()
	 New Game
End Function

Class Game Extends App
	 Method OnCreate()
		 SetUpdateRate(60)
		 MainScreen = Gui.CreateScreen()
		 MyButton = Gui.CreateButton(10, 10, 120, 25, “MyButton”, MainScreen)
	 End Method

	 Method OnUpdate()
		 Gui.Update()
		 If MyButton.IsClicked Then Gui.MsgBox(“MsgBox”, “MyButton Clicked”)
	 End Method

	 Method OnRender()
		 Cls(200,200,200)
		 Gui.Draw()
	 End Method
End Class

Creation Functions 1
Unless otherwise stated:
	 X and Y relate to the location within the parent i.e position of button within its parent window.
	 Parent must be a screen, window or tab.
	 Most text will allow you to use ~n as a new line

Screens
Gui.CreateScreen()
	 The current screen is automaticaly set to the last screen you create, you can set the current
	 screen manualy or transition to different screen - this is covered later on.

Windows
Gui.CreateWindow(X, Y, W, H, Title:String, Parent:Gui, Order = 1, Closeable = 1,
Minimisable = 1, Maximisable = 1, Sizeable = 1, Moveable = 1, Statusbar = 1)
	 Order: 0=Always behind 1=Variable 2=Always ontop
	 If the title is ““ then the window wil have no titlebar

Buttons
Gui.CreateButton(X, Y, W, H, Text:String, Parent:Gui. Style=0)
	 Style can either be 0/1, in the default theme 0=grey/black 1=blue/white

Img Button
Gui.CreateImgButton(X, Y, W, H, Img:Image, Parent:Gui, ImgX = 0, ImgY = 0, ImgW = 0, ImgH = 0)
	 The Image must contain 4 states (Normal,over,down,inactive) in a row in that order.
	 Image can be part of an atlas (where you would enter ImgX / ImgY)
	 When part of an atlas ImgW and ImgH are the width/height of the a single state

Slider Button
Gui.CreateSlideButton(X, Y, W, H, Text1:String, Text2:String, Parent:Gui, Value = 0)
	 Text1 = Left Text2=Right. Value0 = Left revealed Value1 = Right revealed

Tickbox
Gui.CreateTickbox(X, Y, H, Text:String, Parent:Gui, StartValue = 0)
	 0=Unchecked 1=Checked

Radio
Gui.CreateRadio(X, Y, H, Text:String, Parent:Gui, Group = 0, StartValue = 0)
	 0=Unchecked 1=Checked
	 Group lets you set a number to have different groups of radio boxes within the same parent.
	 Group number is only valid in a single parent. i.e two groups with different parents can have
	 the same number and be seperate.

DropDowns
Gui.CreateDropDown(X, Y, W, H, Parent:Gui, StartText:String = “Please Select...”)

DropDown Items
Gui.CreateDropDownItem(Text:String, Parent:Gui, Value = 0)
	 Parent must be a Dropdown
	 Value and text gets assigned to the parent when selected.

Creation Functions 2
Unless otherwise stated:
	 X and Y relate to the location within the parent i.e position of button within its parent window.
	 Parent must be a screen, window or tab.
	 Most text will allow you to use ~n as a new line

Listboxes
Gui.CreateListbox(X, Y, W, H, Parent:Gui)

Listbox Items
Gui.CreateListboxItem(Text:String, Parent:Gui, Value = 0)
	 Parent must be a Listbox
	 Value and text gets assigned to the parent when selected.

Vertical Scrollbars
Gui.CreateVScrollbar(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp is the increment amount of the scrollbar i.e. it goes between 0 and 100 in steps of 10.

Horizontal Scrollbars
Gui.CreateHScrollbar(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp is the increment amount of the scrollbar i.e. it goes between 0 and 100 in steps of 10.

Sliders
Gui.CreateSlider(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp is the increment amount of the scrollbar i.e. it goes between 0 and 100 in steps of 10.

Menus
Gui.CreateMenu(Text:String, Parent:Gui)
	 Parent must be a window or a screen

Menu Items
Gui.CreateMenuItem(Text:String, Parent:Gui, Tickbox = 0, Value = 0)
	 Parent must be a Menu or another MenuItem
	 When Tickbox is 1 the menu’s value will return the value of the tickbox

Tabs
Gui.CreateTab(Text:String, Parent:Gui)
	 Parent must be a Screen or a Window
	 Parent elements to tabs as you would a window or a screen

Labels
Gui.CreateLabel(X, Y, Text:String, Parent:Gui, Align = 0, Boarder = 0)
	 Align aligns multiline text (~n), X,Y remains the top left.
	 Boarder adds a 1px line around the label

Creation Functions 3
Unless otherwise stated:
	 X and Y relate to the location within the parent i.e position of button within its parent window.
	 Parent must be a screen, window or tab.
	 Most text will allow you to use ~n as a new line

Textfields
Gui.CreateTextField(X, Y, W, H, Parent:Gui, Text:String, AllowNumbers = 1, AllowLetters = 1,
AllowSymbols = 1, MaxLength = 0)
	 Textfields are single line text entry
	 MaxLength limits the amout of characters that can be typed. 0=unlimited

Textboxes
Gui.CreateTextBox(X, Y, W, H, Parent:Gui, Text:String, AllowNumbers = 1, AllowLetters = 1,
AllowSymbols = 1, Wordwrap = 0)
	 Textfields are single line text entry
	 Wordwrap=1 keeps the text formatted to within the width of the box.

Tables
Gui.CreateTable(X, Y, W, H, Parent, Rows, Colomns, CellWidth, CellHeight)
	 This creates an empty table. see table notes on how to add headers, textfields,dropdowns and
	 ticks.

Charts
Gui.CreateChart(X,Y,W,H, Parent:Gui, Type, Data:String,Title:String, XLabel:String, YLabel:String, HasKey)
	 Type: 0=Bar 1=Line 2=Scatter 3=Pie
	 Data: See table notes
	 HasKey: Displays a key from within the data string

Screen Transitions
You can either set the current screen or transition to a new screen by doing the following:
(Where screen = destination screen)

	 Gui.SetScreen(Screen:Gui)
	 Gui.FadeToScreen(Screen:Gui)
	 Gui.SlideToScreen(Screen:Gui)
	 Gui.TurnToScreen(Screen:Gui)
	 Gui.ZoomToScreen(Screen:Gui)

Setting and Returning Element Properties
Setting an elements properties
	 Once an element has been created you can still alter its properies, location, size, position,
	 value etc by simply doing the following:

	 MyElement.X = 100
	 MyElement.Value = 1
	 MyElement.Text = “New Text”
	 MyListBox.Selected = MyListBoxItem
	

Returning an elements properties
	 Local BX = MyElement.X
	 If MyTickbox.Value = 1 Then ...

	
List of changable / Returnable properties
	 X,Y,W,H - The position and size of most elements
	 Value - The value of most elements i.e. tickbox, radio
	 Text:String - The text of most elements, this is also used as the title text of a window
	 Active - 0=Inactive 1=Active
	 Minimisable, Maximisable, Closeable, Sizeable, Moveable, Statusbar - Windows only
	 StatusText:String - Windows only
	 Minimum, Maximum, Stp - Scrollbars and sliders only
	 Text1, Text2 - Slider buttons only
	 SelectedTab:Gui - Use to set window/screen current tab
	 Wordwrapped - Used in Textboxes
	 Selected:Gui - Used in Listboxes

Special Cases
	 Listboxes and dropdowns will contain the text and the value of their selected items.
	 Menus if they have tickbox will have the value 0/1
	 A windows text is its titlebar text - if ““ the window will have no titlebar
	
	 To Change a window or a menuItems Icon
		 MyWindow.AddIcon(Image:Image, ImgX = 0, ImgY = 0, ImgW = 0, ImgH = 0)
		 If part of an atlas you will need to enter ImgX, ImgY, ImgW, ImgH
		
	

Tooltips
	
	 Tooltips are super easy:
	 MyElement.Tooltip = “This is a tooltip”
	 MyElement.Tooltip = ““

Gui Interaction
This page covers how to use the elements when they are clicked etc.
There are two ways to do this:
	
	 Gui.Clicked - Returns the gui element that has been clicked (Valid for 1 loop)
	 Gui.Over - Returns the gui element that is currently moused over
	 Gui.OverTime - Returns the start millisecs the current element was first mouse over
	 Gui.Down - Returns the gui element that is currently mouse held down
	 Gui.DownTime - Returns the start millisecs the current element was first mouse down

Alternatly you can use the element itself. i.e.
	
	 MyElement.IsClicked - Returns 1 if the element has been clicked (Valid for 1 loop)
	 MyElement.IsDoubleClicked - Returns 1 if the element has been clicked (Valid for 1 loop)
	 MyElement.IsOver - Returns 1 if the element is mouse over
	 MyElement.IsDown- Returns 1 if the element is mouse held down

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui
Global StatusText:String

Function Main()
	 New Game
End Function

Class Game Extends App
	 Method OnCreate()
		 SetUpdateRate(60)
		 MainScreen = Gui.CreateScreen()
		 MyButton = Gui.CreateButton(10, 100, 120, 25, “MyButton”, MainScreen)
	 End Method

	 Method OnUpdate()
		 Gui.Update()
		 StatusText = “”
		 If MyButton.IsOver Then StatusText = “Button Over”
		 If MyButton.IsDown Then StatusText = “Button Down”
		 If MyButton.IsClicked Then StatusText = “Button Clicked”
	 End Method

	 Method OnRender()
		 Cls(200,200,200)
		 Gui.Draw()
		 DrawText(StatusText, 0, 0)
		 If Gui.Over <> Null Then DrawText(“OverTime: “ + Gui.OverTime, 100, 0)
	 End Method
End Class

MsgBox
Message boxes can be used as a simple notification and can be used to return an ‘ok / cancel / close’
user input.

Display a message box
	
	 Gui.MsgBox(Title:String, Message:String, Buttons, CloseButton=1, Reference:String=””)
	 Buttons: 1=Ok 2=Ok & Cancel
	 Close button refers to the close button on the msgbox window
	 Reference is needed if you inted to capture what button the user clicked

Get User input from a MsgBox
	 Checks to see if the chosen button of a chosed msgbox is clicked

	 Gui.CheckMsgBox(Reference:String, Button)
	 Reference is the reference:String used when displaying the msgBox
	 Button: 0=Close 1=Ok 2=Cancel
	
	

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui

Function Main()
	 New Game
End Function

Class Game Extends App
	 Method OnCreate()
		 SetUpdateRate(60)
		 MainScreen = Gui.CreateScreen()
		 MyButton = Gui.CreateButton(10, 100, 120, 25, “MsgBox”, MainScreen)
	 End Method

	 Method OnUpdate()
		 Gui.Update()
		 If MyButton.IsClicked Then Gui.MsgBox(“Title”, “Message”, 2, 1, “Ref1”)
		 If Gui.CheckMsgBox(“Ref1”, 0) Then Gui.MsgBox(“Result”, “Close button clicked”)
		 If Gui.CheckMsgBox(“Ref1”, 1) Then Gui.MsgBox(“Result”, “Ok button clicked”)
		 If Gui.CheckMsgBox(“Ref1”, 2) Then Gui.MsgBox(“Result”, “Cancel button clicked”)
	 End Method

	 Method OnRender()
		 Cls(200,200,200)
		 Gui.Draw()
	 End Method
End Class

Custom Canvas
You can create a custom canvas for a window or a screen. This will let you draw into a winodw/screen
behind other elements.

First create a custom class that extends ‘MyGui_Canvas’
	 Your custom class should have two methods - Draw() and Update().
		
		 Class MyCanvas Extends MyGui_Canvas
			 Method Draw()
				 ‘Your drawing commands
			 End Method
		
			 Method Update()
				 ‘Your update commands
			 End Method
		 End Class

Attach your custom class to the desired window / screen
	
	 MyWindow.Canvas = New MyCanvas

	
Returning the canvas X,Y,W,H
	 In order for you to use the correct drawing positions for your custom canvas, the
	 MyGui_Canvas has 4 fields (X, Y, W, H) that you reference to directly. (Or by using Self.X etc)
	
		 Class MyCanvas Extends MyGui_Canvas
			 Method Draw()
				 Local CanvasX = X
				 Local CanvasY = Y
				 Local CanvasW= W
				 Local CanvasH = H
				 DrawText(X+”,”+Y+”,”+W+”,”+H,X+10,Y+10)
			 End Method
		
			 Method Update()
				
			 End Method
		 End Class	

File Operations
Import
This will only work with targets that support monkeys os module
Due to the file operations needing the os module I have implemented it as a seperate import.
	 Import mygui.fileoperations

Opening the file operations window
	 Gui_FileOperation.LoadFile(Extension:String, Reference_Id:String)
	 Gui_FileOperation.SaveFile(Extension:String, Reference_Id:String)

	 Extension: This is the file type to be opened/saved. The Window will filter the file types.
	 Reference_Id: This reference be unique. It enables you to have multiple Load/save operations.

Returning User File Path
	 Gui_FileOperation.CheckLoadReturn(Reference_Id:String)
	 Gui_FileOperation.CheckSaveReturn(Reference_Id:String)

	 Reference_Id: This is the reference used in the above commands.

Example on next page

‘File Operations Example

Import mojo
Import mygui
Import os
Import mygui.fileoperations

Global MainScreen:Gui
Global Button1:Gui
Global Button2:Gui
Global Textbox:Gui

Function Main()
	 New Game()
End Function

Class Game Extends App
	 Method OnCreate()
	 	 SetUpdateRate(60)
	 	 MainScreen = Gui.CreateScreen()
	 	 Button1 = Gui.CreateButton(20, 20, 120, 24, “Load File”, MainScreen)
	 	 Button2 = Gui.CreateButton(150, 20, 120, 24, “Save File”, MainScreen)
	 	 Textbox = Gui.CreateTextBox(20, 55, 270, 200, MainScreen, “Text to be saved”)
	 End Method
	
	 Method OnUpdate()
	 	 Gui.Update()
		
	 	 If Button1.IsClicked Then Gui_FileOperation.LoadFile(“txt”, “LoadFile”)
	 	 If Button2.IsClicked Then Gui_FileOperation.SaveFile(“.txt”, “SaveFile”)
		
		 Local LoadReturn:String = Gui_FileOperation.CheckLoadReturn(“LoadFile”)
		 Local SaveReturn:String = Gui_FileOperation.CheckSaveReturn(“SaveFile”)
		
	 	 ‘Load File
	 	 If LoadReturn <> “” Then
	 	 	 Textbox.Text = os.LoadString(LoadReturn)
	 	 EndIf
	 	 ‘SaveFile
	 	 If SaveReturn <> “” Then
	 	 	 os.SaveString(Textbox.Text, SaveReturn)
	 	 End If
	 End Method
	
	
	 Method OnRender()
	 	 Cls(240, 240, 240)
	 	 SetColor(255, 255, 255)
	 	 Gui.Draw()
	 End Method
End Class

Tables
Adding Elements
Once you have created an empty table you can start filling it with elements by doing the following:

	 MyTable.TableAddHeader(CellX, CellY, Label:String)
	 MyTable.TableAddText(CellX, CellY, Text:String, Numbers, Letters, Symbols, MaxLength)
	 MyTable.TableAddDropDown(CellX, CellY, Text:String)
	 MyTable.TableAddDropDownItem(CellX, CellY, Text:String)
	 MyTable.TableAddTick(CellX, CellY, Height, Label:String, Value)

Getting Data From a Table	
	
	 MyTable.TableGetText(CellX, CellY)
	 MyTable.TableGetValue(CellX, CellY)
	
	 Remember even if a textfield within a table is displaying a number you will still need to
	 use the TableGetText() Method

Charts
ChartData
Data for the chart is read from the ChartData field.
This string is seperated by “;” And “,”
	 Example PieChart Data:
	 “100;200;100” - will draw a piechart with 3 segments
	
	 Example BarChart Data:
	 “10,10;5,9;5,10” - will draw 3 bars that are each split into 2

	 Example LineChart Data:
	 “0,0,10,10,20,20,30,30;0,10,10,20,20,30,30,40” - will draw2 Lines (x,y,x,y,x,y,x,y,x,y ; x,y,x,y,x,y,x,y)

	
	

Chart Key	
	
	 If The charts ‘ContainsKey’ field is set to 1 then the system will read the first section of the data
	 as chart key data, seperated by ‘,’ until it reads ‘;’

	 Example Pie with key data
	 “Key1,Key2,Key3;100;200;100” - the order of the keys corresponds to the order of the data

Gui Settings and Themes
Gui Settings
There are a few settings you can adjust to make MyGui suit you!
These are listed below:

	 Gui.ShowTooltips - 0/1 If 0 no tooltips will be shown
	 Gui.Animated - 0/1 Animates the closing and minimising of windows
	 Gui.AnimatedSpeed - Sets the animated frame delay in millisecs (default 15)
	 Gui.Shadows - 0/1 Shows a shadow under windows, menus and dropdowns
	 Gui.UseFastDraw - 0/1 This is designed to reduce operation lag on slow computers,
	 	 if =1 (defualt) loading the screen takes longer, but once loaded will run faster.
	 	 if =0 then screen will load faster but will run slower.
	 	 (Fastdraw works by prerendering the elements)

Gui Theme
You can change the way MyGui looks and even the fonts it uses.
Note: To create a new font you will need fontmachine editor.
(I have included some themes and fonts to get you started - in the themes foder)

	 Gui.SetTheme(Img:Image)
	 Image must be the same layout as the ‘Atlas.png’ in the data folder

	 Gui.SetFonts(TitleFont:String = “”, NormalFont:String = “”, NormalInv:String = “”)
	 The parameters refer to the ‘.txt’ file of a fontmachine font

Tab Control and SetFocus
Tab Control
In MyGui you can navigate/cycle through the elements using the tab and arrow keys.
Hitting enter or space will simulate a click of the current onFocus element.
Shift Tab will take the onFocus up a level. (e.g. from a window to a tab/menu/windowbuttons/parent)
Use arrow keys to navigate menus,dropdowns,listboxes, tabs and window buttons

Setting the OnFocus element manualy
	
	 Gui.SetFocus(Element:Gui)

