
My Gui Documentation

Index
1: Index

2: Getting started

3: How to create elements

4: Creation Functions 1

5: Creation Functions 2

6: Creation Functions 3 And Screen Transitions

7: Setting / returning element properties and Tooltips

8: Gui Interation

9: MsgBox

10: Custom Canvas

11: File Operations

12: File Operations Example

13: Tables and Charts

14: TabControl and Gui Settings and Themes

Getting Started
Installation
	 Unzip	the	downloaded	file	and	copy	the	‘mygui’	folder	(located	in	the	module	folder)
	 into	your	monkey	modules	folder.
	 Make	sure	that	you	also	have	fontmachine	module	in	there
	 Fontmachine	is	free	-	http://www.jungleide.com/fontmachine/fontmachine-14-01-14-A.zip

Integration
	 At	the	beginning	of	your	code:
 Import mygui

	 In	your	Update	Method
 Gui.Update()

 In Your Render Method:
 Gui.Draw()

Import	mojo
Import	mygui

Function	Main()
 New Game
End Function

Class Game Extends App
	 Method	OnCreate()
	 	 SetUpdateRate(60)
 End Method

	 Method	OnUpdate()
 Gui.Update()
 End Method

	 Method	OnRender()
	 	 Cls(200,200,200)
 Gui.Draw()
 End Method
End Class

Please Note
	 MyGui	works	by	drawing	elements	onto	the	‘Gui.CurrentScreen’.	
	 This	means	that	in	order	to	create	anything	you	will	first	have	to	create	a	screen	to	put	it	on.
	 You	can	have	multiple	screens	and	use	effects	to	transition	between	them.

How to Create Elements
Declaring Elements
	 All	Element	types	use	the	same	definition	type	(Gui)
 Global MyScreen:Gui
 Global MyButton:Gui

Creating Elements
	 After	Declaring	you	element	you	can	create	it,	either	in	your	OnCreate	Method		or	on	the	fly
	 anywhere	in	your	program.

 Remember	you	will	first	need	to	create	a	screen	to	place	them	on.
 MyScreen Gui.CreateScreen()
 MyButton = Gui.CreateButton(X, Y, W, H, Text$, Parent:Gui, Style=0)

 All	of	the	creation	functions	are	listed	o	the	next	page	along	with	a	description	of	
	 their	parameters.	But	for	now	let	me	show	you	a	simple	working	example.

	 (You	may	have	to	manually	change	the	(“)	as	they	copy/paste	wrong)

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui

Function Main()
 New Game
End Function

Class Game Extends App
 Method OnCreate()
 SetUpdateRate(60)
 MainScreen = Gui.CreateScreen()
 MyButton = Gui.CreateButton(10, 10, 120, 25, “MyButton”, MainScreen)
 End Method

 Method OnUpdate()
 Gui.Update()
 If MyButton.IsClicked Then Gui.MsgBox(“MsgBox”, “MyButton Clicked”)
 End Method

 Method OnRender()
 Cls(200,200,200)
 Gui.Draw()
 End Method
End Class

Creation Functions 1
Unless otherwise stated:
	 X	and	Y	relate	to	the	location	within	the	parent	i.e	position	of	button	within	its	parent	window.
	 Parent	must	be	a	screen,	window	or	tab.
	 Most	text	will	allow	you	to	use	~n	as	a	new	line

Screens
Gui.CreateScreen()
	 The	current	screen	is	automaticaly	set	to	the	last	screen	you	create,	you	can	set	the	current	
	 screen	manualy	or	transition	to	different	screen	-	this	is	covered	later	on.

Windows
Gui.CreateWindow(X, Y, W, H, Title:String, Parent:Gui, Order = 1, Closeable = 1,
Minimisable = 1, Maximisable = 1, Sizeable = 1, Moveable = 1, Statusbar = 1)
	 Order:	0=Always	behind		1=Variable		2=Always	ontop
	 If	the	title	is	““	then	the	window	wil	have	no	titlebar

Buttons
Gui.CreateButton(X, Y, W, H, Text:String, Parent:Gui. Style=0)
	 Style	can	either	be	0/1,	in	the	default	theme	0=grey/black	1=blue/white

Img Button
Gui.CreateImgButton(X, Y, W, H, Img:Image, Parent:Gui, ImgX = 0, ImgY = 0, ImgW = 0, ImgH = 0)
 The	Image	must	contain	4	states	(Normal,over,down,inactive)	in	a	row	in	that	order.
	 Image	can	be	part	of	an	atlas	(where	you	would	enter	ImgX	/	ImgY)
	 When	part	of	an	atlas	ImgW	and	ImgH	are	the	width/height	of	the	a	single	state

Slider Button
Gui.CreateSlideButton(X, Y, W, H, Text1:String, Text2:String, Parent:Gui, Value = 0)
 Text1	=	Left		Text2=Right.				Value0	=	Left	revealed		Value1	=	Right	revealed

Tickbox
Gui.CreateTickbox(X, Y, H, Text:String, Parent:Gui, StartValue = 0)
	 0=Unchecked				1=Checked

Radio
Gui.CreateRadio(X, Y, H, Text:String, Parent:Gui, Group = 0, StartValue = 0)
	 0=Unchecked				1=Checked
	 Group	lets	you	set	a	number	to	have	different	groups	of	radio	boxes	within	the	same	parent.
	 Group	number	is	only	valid	in	a	single	parent.	i.e	two	groups	with	different	parents	can	have	
	 the	same	number	and	be	seperate.

DropDowns
Gui.CreateDropDown(X, Y, W, H, Parent:Gui, StartText:String = “Please Select...”)

DropDown Items
Gui.CreateDropDownItem(Text:String, Parent:Gui, Value = 0)
	 Parent	must	be	a	Dropdown
	 Value	and	text	gets	assigned	to	the	parent	when	selected.

Creation Functions 2
Unless otherwise stated:
	 X	and	Y	relate	to	the	location	within	the	parent	i.e	position	of	button	within	its	parent	window.
	 Parent	must	be	a	screen,	window	or	tab.
	 Most	text	will	allow	you	to	use	~n	as	a	new	line

Listboxes
Gui.CreateListbox(X, Y, W, H, Parent:Gui)

Listbox Items
Gui.CreateListboxItem(Text:String, Parent:Gui, Value = 0)
 Parent must be a Listbox
	 Value	and	text	gets	assigned	to	the	parent	when	selected.

Vertical Scrollbars
Gui.CreateVScrollbar(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp	is	the	increment	amount	of	the	scrollbar	i.e.	it	goes	between	0	and	100	in	steps	of	10.

Horizontal Scrollbars
Gui.CreateHScrollbar(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp	is	the	increment	amount	of	the	scrollbar	i.e.	it	goes	between	0	and	100	in	steps	of	10.

Sliders
Gui.CreateSlider(X, Y, W, H, Minimum, Maximum, Parent:Gui, Value = 0, Stp = 0)
	 Stp	is	the	increment	amount	of	the	scrollbar	i.e.	it	goes	between	0	and	100	in	steps	of	10.

Menus
Gui.CreateMenu(Text:String, Parent:Gui)
 Parent must be a window or a screen

Menu Items
Gui.CreateMenuItem(Text:String, Parent:Gui, Tickbox = 0, Value = 0)
 Parent must be a Menu or another MenuItem
	 When	Tickbox	is	1	the	menu’s	value	will	return	the	value	of	the	tickbox

Tabs
Gui.CreateTab(Text:String, Parent:Gui)
 Parent must be a Screen or a Window
	 Parent	elements	to	tabs	as	you	would	a	window	or	a	screen

Labels
Gui.CreateLabel(X, Y, Text:String, Parent:Gui, Align = 0, Boarder = 0)
	 Align	aligns	multiline	text	(~n),	X,Y	remains	the	top	left.
 Boarder adds a 1px line around the label

Creation Functions 3
Unless otherwise stated:
	 X	and	Y	relate	to	the	location	within	the	parent	i.e	position	of	button	within	its	parent	window.
	 Parent	must	be	a	screen,	window	or	tab.
	 Most	text	will	allow	you	to	use	~n	as	a	new	line

Textfields
Gui.CreateTextField(X, Y, W, H, Parent:Gui, Text:String, AllowNumbers = 1, AllowLetters = 1,
AllowSymbols = 1, MaxLength = 0)
	 Textfields	are	single	line	text	entry
	 MaxLength	limits	the	amout	of	characters	that	can	be	typed.	0=unlimited

Textboxes
Gui.CreateTextBox(X, Y, W, H, Parent:Gui, Text:String, AllowNumbers = 1, AllowLetters = 1,
AllowSymbols = 1, Wordwrap = 0)
	 Textfields	are	single	line	text	entry
	 Wordwrap=1	keeps	the	text	formatted	to	within	the	width	of	the	box.

Tables
Gui.CreateTable(X, Y, W, H, Parent, Rows, Colomns, CellWidth, CellHeight)
	 This	creates	an	empty	table.	see	table	notes	on	how	to	add	headers,	textfields,dropdowns	and	
	 ticks.

Charts
Gui.CreateChart(X,Y,W,H, Parent:Gui, Type, Data:String,Title:String, XLabel:String, YLabel:String, HasKey)
	 Type:	0=Bar		1=Line		2=Scatter		3=Pie
	 Data:	See	table	notes
	 HasKey:	Displays	a	key	from	within	the	data	string

Screen Transitions
You	can	either	set	the	current	screen	or	transition	to	a	new	screen	by	doing	the	following:
(Where	screen	=	destination	screen)

 Gui.SetScreen(Screen:Gui)
 Gui.FadeToScreen(Screen:Gui)
 Gui.SlideToScreen(Screen:Gui)
 Gui.TurnToScreen(Screen:Gui)
 Gui.ZoomToScreen(Screen:Gui)

Setting and Returning Element Properties
Setting an elements properties
	 Once	an	element	has	been	created	you	can	still	alter	its	properies,	location,	size,	position,
	 value	etc	by	simply	doing	the	following:

 MyElement.X = 100
 MyElement.Value = 1
 MyElement.Text = “New Text”
 MyListBox.Selected = MyListBoxItem

Returning an elements properties
 Local	BX	=	MyElement.X
	 If	MyTickbox.Value	=	1	Then	...

List of changable / Returnable properties
 X,Y,W,H	-	The	position	and	size	of	most	elements
 Value		-	The	value	of	most	elements	i.e.	tickbox,	radio
 Text:String		-	The	text	of	most	elements,	this	is	also	used	as	the	title	text	of	a	window
 Active	-	0=Inactive		1=Active
 Minimisable,	Maximisable,	Closeable,	Sizeable,	Moveable,	Statusbar	-	Windows	only
 StatusText:String	-	Windows	only
 Minimum,	Maximum,	Stp		-	Scrollbars	and	sliders	only
 Text1,	Text2			-	Slider	buttons	only
 SelectedTab:Gui			-	Use	to	set	window/screen	current	tab
 Wordwrapped -	Used	in	Textboxes
 Selected:Gui	-	Used	in	Listboxes

Special Cases
	 Listboxes	and	dropdowns	will	contain	the	text	and	the	value	of	their	selected	items.
	 Menus	if	they	have	tickbox	will	have	the	value	0/1
	 A	windows	text	is	its	titlebar	text	-	if	““	the	window	will	have	no	titlebar

 To Change a window or a menuItems Icon
 MyWindow.AddIcon(Image:Image, ImgX = 0, ImgY = 0, ImgW = 0, ImgH = 0)
 If part of an atlas you will need to enter ImgX, ImgY, ImgW, ImgH

Tooltips

	 Tooltips	are	super	easy:
 MyElement.Tooltip = “This is a tooltip”
 MyElement.Tooltip = ““

Gui Interaction
This	page	covers	how	to	use	the	elements	when	they	are	clicked	etc.
There	are	two	ways	to	do	this:

 Gui.Clicked	-	Returns	the	gui	element	that	has	been	clicked	(Valid	for	1	loop)
 Gui.Over	-	Returns	the	gui	element	that	is	currently	moused	over
 Gui.OverTime		-	Returns	the	start	millisecs	the	current	element	was	first	mouse	over
 Gui.Down	-	Returns	the	gui	element	that	is	currently	mouse	held	down
 Gui.DownTime	-	Returns	the	start	millisecs	the	current	element	was	first	mouse	down

Alternatly	you	can	use	the	element	itself.	i.e.

 MyElement.IsClicked	-	Returns	1	if	the	element	has	been	clicked	(Valid	for	1	loop)
 MyElement.IsDoubleClicked	-	Returns	1	if	the	element	has	been	clicked	(Valid	for	1	loop)
 MyElement.IsOver	-	Returns	1	if	the	element	is	mouse	over
 MyElement.IsDown-	Returns	1	if	the	element	is	mouse	held	down

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui
Global StatusText:String

Function Main()
 New Game
End Function

Class Game Extends App
 Method OnCreate()
 SetUpdateRate(60)
 MainScreen = Gui.CreateScreen()
 MyButton = Gui.CreateButton(10, 100, 120, 25, “MyButton”, MainScreen)
 End Method

 Method OnUpdate()
 Gui.Update()
 StatusText = “”
 If MyButton.IsOver Then StatusText = “Button Over”
 If MyButton.IsDown Then StatusText = “Button Down”
 If MyButton.IsClicked Then StatusText = “Button Clicked”
 End Method

 Method OnRender()
 Cls(200,200,200)
 Gui.Draw()
 DrawText(StatusText, 0, 0)
 If Gui.Over <> Null Then DrawText(“OverTime: “ + Gui.OverTime, 100, 0)
 End Method
End Class

MsgBox
Message	boxes	can	be	used	as	a	simple	notification	and	can	be	used	to	return	an	‘ok	/	cancel	/	close’	
user	input.

Display a message box

 Gui.MsgBox(Title:String, Message:String, Buttons, CloseButton=1, Reference:String=””)
 Buttons: 1=Ok 2=Ok & Cancel
 Close button refers to the close button on the msgbox window
 Reference is needed if you inted to capture what button the user clicked

Get User input from a MsgBox
 Checks to see if the chosen button of a chosed msgbox is clicked

 Gui.CheckMsgBox(Reference:String, Button)
 Reference is the reference:String used when displaying the msgBox
 Button: 0=Close 1=Ok 2=Cancel

Import mojo
Import mygui

Global MainScreen:Gui
Global MyButton:Gui

Function Main()
 New Game
End Function

Class Game Extends App
 Method OnCreate()
 SetUpdateRate(60)
 MainScreen = Gui.CreateScreen()
 MyButton = Gui.CreateButton(10, 100, 120, 25, “MsgBox”, MainScreen)
 End Method

 Method OnUpdate()
 Gui.Update()
 If MyButton.IsClicked Then Gui.MsgBox(“Title”, “Message”, 2, 1, “Ref1”)
 If Gui.CheckMsgBox(“Ref1”, 0) Then Gui.MsgBox(“Result”, “Close button clicked”)
 If Gui.CheckMsgBox(“Ref1”, 1) Then Gui.MsgBox(“Result”, “Ok button clicked”)
 If Gui.CheckMsgBox(“Ref1”, 2) Then Gui.MsgBox(“Result”, “Cancel button clicked”)
 End Method

 Method OnRender()
 Cls(200,200,200)
 Gui.Draw()
 End Method
End Class

Custom Canvas
You	can	create	a	custom	canvas	for	a	window	or	a	screen.	This	will	let	you	draw	into	a	winodw/screen	
behind	other	elements.

First create a custom class that extends ‘MyGui_Canvas’
	 Your	custom	class	should	have	two	methods	-	Draw()	and	Update().	

 Class MyCanvas Extends MyGui_Canvas
 Method Draw()
 ‘Your drawing commands
 End Method

 Method Update()
 ‘Your update commands
 End Method
 End Class

Attach your custom class to the desired window / screen

 MyWindow.Canvas = New MyCanvas

Returning the canvas X,Y,W,H
	 In	order	for	you	to	use	the	correct	drawing	positions	for	your	custom	canvas,	the
	 MyGui_Canvas	has	4	fields	(X,	Y,	W,	H)	that	you	reference	to	directly.	(Or	by	using	Self.X	etc)

 Class MyCanvas Extends MyGui_Canvas
 Method Draw()
 Local CanvasX = X
 Local CanvasY = Y
 Local CanvasW= W
 Local CanvasH = H
 DrawText(X+”,”+Y+”,”+W+”,”+H,X+10,Y+10)
 End Method

 Method Update()

 End Method
 End Class

File Operations
Import
This	will	only	work	with	targets	that	support	monkeys	os	module
Due	to	the	file	operations	needing	the	os	module	I	have	implemented	it	as	a	seperate	import.
 Import	mygui.fileoperations

Opening the file operations window
 Gui_FileOperation.LoadFile(Extension:String, Reference_Id:String)
 Gui_FileOperation.SaveFile(Extension:String, Reference_Id:String)

 Extension: This is the file type to be opened/saved. The Window will filter the file types.
 Reference_Id: This reference be unique. It enables you to have multiple Load/save operations.

Returning User File Path
 Gui_FileOperation.CheckLoadReturn(Reference_Id:String)
 Gui_FileOperation.CheckSaveReturn(Reference_Id:String)

 Reference_Id: This is the reference used in the above commands.

Example on next page

‘File	Operations	Example

Import	mojo
Import	mygui
Import os
Import	mygui.fileoperations

Global MainScreen:Gui
Global Button1:Gui
Global Button2:Gui
Global Textbox:Gui

Function	Main()
	 New	Game()
End Function

Class Game Extends App
	 Method	OnCreate()
	 	 SetUpdateRate(60)
	 	 MainScreen	=	Gui.CreateScreen()
	 	 Button1	=	Gui.CreateButton(20,	20,	120,	24,	“Load	File”,	MainScreen)
	 	 Button2	=	Gui.CreateButton(150,	20,	120,	24,	“Save	File”,	MainScreen)
	 	 Textbox	=	Gui.CreateTextBox(20,	55,	270,	200,	MainScreen,	“Text	to	be	saved”)
 End Method

	 Method	OnUpdate()
	 	 Gui.Update()

	 	 If	Button1.IsClicked	Then	Gui_FileOperation.LoadFile(“txt”,	“LoadFile”)
	 	 If	Button2.IsClicked	Then	Gui_FileOperation.SaveFile(“.txt”,	“SaveFile”)

 Local LoadReturn:String = Gui_FileOperation.CheckLoadReturn(“LoadFile”)
 Local SaveReturn:String = Gui_FileOperation.CheckSaveReturn(“SaveFile”)

	 	 ‘Load	File
	 	 If	LoadReturn	<>	“”	Then
	 	 	 Textbox.Text	=	os.LoadString(LoadReturn)
	 	 EndIf
	 	 ‘SaveFile
	 	 If	SaveReturn	<>	“”	Then
	 	 	 os.SaveString(Textbox.Text,	SaveReturn)
	 	 End	If
 End Method

	 Method	OnRender()
	 	 Cls(240,	240,	240)
	 	 SetColor(255,	255,	255)
	 	 Gui.Draw()
 End Method
End Class

Tables
Adding Elements
Once	you	have	created	an	empty	table	you	can	start	filling	it	with	elements	by	doing	the	following:

 MyTable.TableAddHeader(CellX,	CellY,	Label:String)
 MyTable.TableAddText(CellX,	CellY,		Text:String,	Numbers,	Letters,	Symbols,	MaxLength)
 MyTable.TableAddDropDown(CellX,	CellY,	Text:String)
	 MyTable.TableAddDropDownItem(CellX,	CellY,	Text:String)
	 MyTable.TableAddTick(CellX,	CellY,	Height,	Label:String,	Value)

Getting Data From a Table

 MyTable.TableGetText(CellX,	CellY)
	 MyTable.TableGetValue(CellX,	CellY)

 Remember	even	if	a	textfield	within	a	table	is	displaying	a	number	you	will	still	need	to
	 use	the	TableGetText()	Method

Charts
ChartData
Data	for	the	chart	is	read	from	the	ChartData	field.
This	string	is	seperated	by	“;”	And	“,”
	 Example	PieChart	Data:
	 “100;200;100”		-	will	draw	a	piechart	with	3	segments

	 Example	BarChart	Data:
	 “10,10;5,9;5,10”		-	will	draw	3	bars	that	are	each	split	into	2

	 Example	LineChart	Data:
	 “0,0,10,10,20,20,30,30;0,10,10,20,20,30,30,40”		-	will	draw2	Lines	(x,y,x,y,x,y,x,y,x,y	;	x,y,x,y,x,y,x,y)

Chart Key

 If	The	charts	‘ContainsKey’	field	is	set	to	1	then	the	system	will	read	the	first	section	of	the	data	
	 as	chart	key	data,	seperated	by	‘,’	until	it	reads	‘;’

 Example	Pie	with	key	data
	 “Key1,Key2,Key3;100;200;100”	-	the	order	of	the	keys	corresponds	to	the	order	of	the	data	

Gui Settings and Themes
Gui Settings
There	are	a	few	settings	you	can	adjust	to	make	MyGui	suit	you!
These are listed below:

 Gui.ShowTooltips	-	0/1	If	0	no	tooltips	will	be	shown
 Gui.Animated	-	0/1	Animates	the	closing	and	minimising	of	windows
 Gui.AnimatedSpeed	-	Sets	the	animated	frame	delay	in	millisecs	(default	15)
 Gui.Shadows	-	0/1	Shows	a	shadow	under	windows,	menus	and	dropdowns
 Gui.UseFastDraw	-	0/1	This	is	designed	to	reduce	operation	lag	on	slow	computers,
	 	 if	=1	(defualt)	loading	the	screen	takes	longer,	but	once	loaded	will	run	faster.
	 	 if	=0	then	screen	will	load	faster	but	will	run	slower.
	 	 (Fastdraw	works	by	prerendering	the	elements)

Gui Theme
You	can	change	the	way	MyGui	looks	and	even	the	fonts	it	uses.
Note:	To	create	a	new	font	you	will	need	fontmachine	editor.
(I	have	included	some	themes	and	fonts	to	get	you	started	-	in	the	themes	foder)

 Gui.SetTheme(Img:Image)
 Image must be the same layout as the ‘Atlas.png’ in the data folder

 Gui.SetFonts(TitleFont:String = “”, NormalFont:String = “”, NormalInv:String = “”)
 The parameters refer to the ‘.txt’ file of a fontmachine font

Tab Control and SetFocus
Tab Control
In	MyGui	you	can	navigate/cycle	through	the	elements	using	the	tab	and	arrow	keys.
Hitting	enter	or	space	will	simulate	a	click	of	the	current	onFocus	element.
Shift	Tab	will	take	the	onFocus	up	a	level.	(e.g.	from	a	window	to	a	tab/menu/windowbuttons/parent)
Use	arrow	keys	to	navigate	menus,dropdowns,listboxes,	tabs	and	window	buttons

Setting the OnFocus element manualy

 Gui.SetFocus(Element:Gui)

